Acta Cryst. (1971). B27, 245
The crystal structure of $\mathbf{C s U}_{\mathbf{6}} \mathbf{F}_{\mathbf{2 5}}$.* * By George Brunton, Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.
(Received 24 June 1970)
The complex fluoride $\mathrm{CsU}_{6} \mathrm{~F}_{25}$ crystallizes with space group $P 6_{3} / m m c$; $a_{0}=8 \cdot 2424$ (4), $c_{0}=16 \cdot 412$ (2) \AA, $Z=2$ and the calculated density $=7.0013 \mathrm{~g} . \mathrm{cm}^{-3}$. The U^{4+} ion is coordinated by 9 F - ions at distances of 2.267 (8) to 2.54 (6) \AA and the Cs^{+}ion by $12 \mathrm{~F}^{-}$at distances of 3.12 (2) and 3.45 (4) \AA. The final R value is 0.0685 for 212 reflections $>3 \sigma$. The reflections were collected with an automated Picker four-circle goniostat.

Introduction

The complex fluoride compound $\mathrm{CsU}_{6} \mathrm{~F}_{25}$ has similar unit cell parameters ($a_{0}=8 \cdot 2424(4)$ and $c_{0}=16.412(2) \AA$) to $\mathrm{KU}_{6} \mathrm{~F}_{25}\left(a_{0}=8.18(1)\right.$ and $\left.c_{0}=16.42(2) \AA\right)$ and $\mathrm{KTh}_{6} \mathrm{~F}_{25}$ ($a_{0}=8.32(1)$ and $c_{0}=16.78(2) \AA$) which were first described by Zachariasen (1948). The three compounds have the same space group, $P 6_{3} / m m c$, and with $\mathrm{CsTh}_{6} \mathrm{~F}_{25}$ (Thoma \& Carlton, 1961) and $\mathrm{RbU}_{6} \mathrm{~F}_{25}$ (Thoma, Insley, Landau, Friedman \& Grimes, 1958), probably are isomorphous. Preliminary work on $\mathrm{RbTh}_{6} \mathrm{~F}_{25}$ indicates that it has a similar structure but a different space group (Brunton, Insley, McVay \& Thoma, 1965).

Experimental

The compound $\mathrm{CsU}_{6} \mathrm{~F}_{25}$ crystallizes readily as the primary phase in the composition range $60-70$ mole per cent UF_{4} in a $\mathrm{CsF}-\mathrm{UF}_{4}$ melt. Crystals picked from a cooled ingot of this composition range were ground to approximately spherical shape in an air-driven race. An ellipsoidal crystal of dimensions $0.163 \times 0.169 \times 0.182 \mathrm{~mm}$ was mounted on a computer operated Picker four-circle goniostat equipped with a scintillation counter detector. Independent reflections $h k l, h>k \geq 0$ and $l \geq 0$ were measured by the $0-2 \theta$ scan technique using unfiltered $\mathrm{Cu} K \alpha$ radiation. The 351 reflections were corrected for Lorentz and polarization effects and absorption ($\mu=2185 \cdot 64 \mathrm{~cm}^{-1}$). The conditions for reflection, $h h 2 \bar{h} l, l=2 n$, and the diffraction symmetry, $6 / \mathrm{mmm}$, are consistent with space groups; $P 6_{3} m c, P 62 \mathrm{c}$ and $P 6_{3} / m m c$. The final structure confirms Zachariasen's (1948) choice of space group $P 6_{3} / m m c$.

The unit-cell parameters were determined by a leastsquares adjustment of 12 high angle (129-135 $2 \theta) \mathrm{Cu} \mathrm{K} \alpha_{1}$

[^0]reflections $\left(\mathrm{Cu} K \alpha_{1}=1.5405 \AA\right), \quad Z=2$ and $\varrho_{\text {cal }}=7.0013$ $\mathrm{g} . \mathrm{cm}^{-3}$. The structure was refined by iterative least-squares adjustment using a modification of the Busing, Martin \& Levy (1962) computer program. The starting parameters for the uranium atoms were determined from three-dimensional sections of the Patterson function. The parameters of the other ions were determined from Fourier sections computed from the uranium positions. The quantity minimized by the least-squares program was $\sum w\left|\left|F_{o}^{2}\right|-\left|F_{c}^{2}\right|\right|^{2}$ with weights, w, equal to the reciprocals of the variances which were estimated from the empirical equation;
$$
\sigma^{2}\left(F_{o}^{2}\right)=\left[T+B+(0.03(T-B))^{2}\right] /\left[A(\mathrm{Lp})^{2}\right]
$$
where $T=$ total counts, $B=$ background counts, $A=$ absorption correction, and $\mathrm{Lp}=$ Lorentz and polarization corrections (Brown \& Levy, 1964). The scattering factors for the ions were taken from Cromer \& Waber, (1965) and the anomalous dispersion terms for U and Cs for $\mathrm{Cu} K \alpha$ radiation were taken from Cromer (1965). Anisotropic temperature factors were calculated for U^{4+} and Cs^{+}and the temperature factors for F^{-}were constrained to be isotropic. The final parameters were calculated using the data greater than $9 \sigma^{2}\left(F_{o}^{2}\right)$. The elimination of the statistically poorer weak reflections by this method improves the final discrepancy indices and the $F^{-}-F^{-}$distances but does not change the overall discrepancy index for all of the data. The discrepancy indices;
\[

$$
\begin{aligned}
R_{1}=\sum| | F_{o}^{2}\left|-\left|F_{c}^{2}\right|\right| / \sum\left|F_{o}^{2}\right| & =0.1329 \text { for } 212 \text { reflections }>3 \sigma \\
& =0.1385 \text { for all reflections } \\
R_{2}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right| & =0.0685 \text { for } 212 \text { reflections }>3 \sigma \\
& =0.0936 \text { for all reflections } .
\end{aligned}
$$
\]

The standard deviation of an observation of unit weight $\left[\Sigma w\left(F_{o}-F_{c}\right)^{2} /\left(n_{o}-n_{v}\right)\right]^{1 / 2}$ is 2.708 where n_{o} is the number of reflections, 212, and n_{v} the number of variables. An extinction correction was applied to F_{c} by the method suggested by Zachariasen (1967, 1968), $r^{*}=0.006$ (2) \AA.

Table 1. Atomic parameters and temperature factors for $\operatorname{CsU}_{6} \mathrm{~F}_{25}\left(\times 10^{3}\right)$

Wyckoff										
notation	Atom	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$12(k)$	U	$173 \cdot 7(2)$	$2 x$	$111 \cdot 46(9)$	$0 \cdot 9(4)$	$7 \cdot 7(4)$	$0 \cdot 6(1)$	$0 \cdot 0$	$-0 \cdot 12(8)$	b
$2(d)$	Cs	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{4}$	$7 \cdot 2(9)$	c	$1 \cdot 9(4)$	c	$0 \cdot 0$	$0 \cdot 0$
$12(j)$	$\mathrm{F}(1)$	$184(3)$	$2 x$	$\frac{1}{4}$	$1(2)$	d				
$12(k)$	$\mathrm{F}(2)$	$485(3)$	$2 x$	$144(2)$	$7(2)$					
$12(i)$	$\mathrm{F}(3)$	$678(4)$	$0 \cdot 0$	$0 \cdot 0$	$6 \cdot 7(9)$					
$4(f)$	$\mathrm{F}(4)$	$\frac{1}{3}$	$\frac{2}{3}$	$68(7)$	$23(5)$					
$4(e)$	$\mathrm{F}(5)$	$0 \cdot 0$	$0 \cdot 0$	$76(18)$	$68(15)$					
$12(k)$	$\mathrm{F}(6)$	$121(5)$	$2 x$	$649(5)$	$25(3)$					

a Coefficients in the temperature factor: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.
b $\beta_{23}=2 \beta_{13}$
c $\beta_{22}=2 \beta_{12}=\beta_{11}$
d All of the F temperature factors were constrained to be isotropic: $\beta_{22}=\beta_{11}, \beta_{33}=c^{* 2} \beta_{11} / a^{* 2}, \beta_{12}=b^{*} \cos \gamma^{*} \beta_{11} / a^{*}$ and $\beta_{23}=\beta_{13}=0$, where a^{*}, b^{*}, c^{*} and γ^{*} are the reciprocal parameters. Standard errors in parentheses, corresponding to the last significant digit, are given by the variance-covariance matrix.

Results

The atomic parameters and temperature factors for $\mathrm{CsU}_{6} \mathrm{~F}_{25}$ are listed in Table 1; the interatomic distances in Table 2 and the observed and calculated structure factors and the square root of $\sigma^{2}\left(F_{o}^{2}\right)$ in Table 3. The U4+ ion is coordinated by $9 \mathrm{~F}^{-}$at the corners of a trigonal prism with pyramids on each of the prism faces. The U-F polyhedron is distorted with U-F distances ranging from $2 \cdot 267$ (8) to $2 \cdot 54$ (6) \AA, Fig. 1. The Cs^{+}ion is coordinated by $12 \mathrm{~F}-$ at distances of $3 \cdot 12$ (2) and 3.45 (4) \AA. The result of the $12 \mathrm{~F}^{-}$coordination around Cs is a double ring of U-F polyhedra around each Cs ion-a ring of 6 polyhedra on each side. Within each ring the polyhedra link by sharing edges, $F(2)-F(4)$ and $F(6)-F(5)$ alternately and these are the short F-F distances. The rings on each side of Cs are linked by corner sharing through the $F(1)$ ion, Fig. 2. The sets of double rings are joined in three dimensions by one pair of adjacent polyhedra sharing edges $[F(3)-F(3)]$ with another pair of polyhedra in another double ring.

Table 2. Interatomic distances for $\mathrm{CsU}_{6} \mathrm{~F}_{25}$

$2[\mathrm{U}-\mathrm{F}(3)]$	$2 \cdot 267$ (8) \AA	U-F(5)	2.54 (6) \AA
$\mathrm{U}-\mathrm{F}(1)$	$2 \cdot 279$ (2)	$6[\mathrm{Cs}-\mathrm{F}(2)]$	$3 \cdot 12$ (2)
2[U-F(6)]	$2 \cdot 29$ (5)	$6[\mathrm{Cs}-\mathrm{F}(6)]$	$3 \cdot 45$ (4)
$2[\mathrm{U}-\mathrm{F}(2)]$	2.29 (2)	$F(1)-F(2)$	2.76 (3)
$\mathrm{F}(1)-\mathrm{F}(6)$	$2 \cdot 85$ (6)	$\mathrm{F}(2)-\mathrm{F}(3)$	2.79 (4)
$F(2)-F(6)$	2.84 (4)	$F(2)-F(4)$	2.50 (6)
$\mathrm{F}(3)-\mathrm{F}(3)$	$2 \cdot 65$ (4)	$\mathrm{F}(3)-\mathrm{F}(6)$	2.84 (7)
$\mathrm{F}(5)-\mathrm{F}(6)$	$2 \cdot 1$ (2)	$\mathrm{F}(5)-\mathrm{F}(5)$	$2 \cdot 5$ (6)

Table 3. Observed and calculated structure factors for $\mathrm{CsU}_{6} \mathrm{~F}_{25}$

Some of the F-F distances, e.g. $\mathrm{F}(5)-\mathrm{F}$ (6) (Table 2), are shorter than is normal for an ionic structure, but the large standard errors of some of the fluorine atomic parameters and the large thermal parameter for $F(5)$, for example, are probably only indicative of the difficulty of finding atoms of low atomic number in heavy atom structures.

Fig. 1. One asymmetrical unit of $\mathrm{Cs}_{6} \mathrm{~F}_{31}$ with one fourth unit cell outlined.

Fig. 2. Ceṣium ịon with itṣ twelve nẹareṣt neighbor U^{4+} polyhedra.

References

Brown, G. M. \& Levy, H. A. (1964). J. Phys. 25, 497. Brunton, G. D., Insley, H., McVay, T. N. \& Thoma, R. E. (1965). USAEC Report ORNL-3761, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Thoma, R. E. \& Carlton, T. S. (1961). J. Inorg. Nucl. Chem. 17, 88.
Thoma, R. E., Insley, H., Landau, B. S., Friedman, H. A. \& Grimes, W. R. (1958). J. Amer. Ceram. Soc. 41, 538. Zachariasen, W. H. (1948). J. Amer. Chem. Soc. 70, 2147. Zachariasen, W. H. (1967). Acta Cryst. 23, 558.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212.

Acta Cryst. (1971). B27, 247
The unit cell and space group of L-tyrosine. By Rita Boggs and Jerry Donohue, Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.
(Received 10 August 1970)
The space group of L-tyrosine is $P 2_{1} 2_{1} 2_{1}$, and there are four molecules in a unit cell having $a=6.921 \pm 0.002$, $b=21 \cdot 146 \pm 0 \cdot 006, c=5 \cdot 835 \pm 0.001 \AA$.

The space group Pnam was assigned to L-tyrosine by Khawas \& Krishna Murti (1969a) on the basis of indexing of powder photographs, and of fiber patterns obtained from clusters of very fine acicular crystals: they had been unable to obtain good single crystals. The unit-cell dimensions were gi ien as $a=13 \cdot 89, b=21 \cdot 08$, and $c=5 \cdot 842 \AA$, with $Z=8$. After it was pointed out to them by Dr Gerald Strahs that a centric space group was not possible for L-tyrosine, they (Khawas \& Krishna Murti, 1969b) withdrew Pnam and remarked 'No acentric space group can be assigned to L-tyrosine satisfying the apparent systematic extinctions of X-ray reflection. Presumably the extinctions are accidental.', the implication being that the space group is thus $P 222$, the one assigned by them in the same communication to L-tryptophan. Because we considered this space group unlikely, and tezause of continuing interest in these laboratories in amino acid structures, we undertook a reinvestigation of the space group.

After numerous attempts, one single crystal was obtained by evaporation of saturated aqueous solutions. It proved to be orthorhombic, and the only systematic absences observed on precession photographs are $h 00$ with h odd, $0 k 0$ with k odd, and $00 l$ with l odd. The space group is thus uniquely determined as the ubiquitous $P 2_{1} 2_{1} 2_{1}$. These photographs also showed that the a axis of Khawas \& Krishna Murti must be halved, giving 4 molecules per unit cell, a not unusual number for this space group. Unfortunately, shortly after the precession photographs had been obtained, the crystal became detached from the glass fiber and was lost.

We recorded the powder pattern of l-tyrosine in a Philips 11.46 cm camera using $\mathrm{Cr} K \alpha$ radiation. This pattern matches that published by Khawas \& Krishna Murti (1969a), except that we did not observe a line at $d=6.237 \AA$ ($v w$), which they indexed as 130 , nor at $2 \cdot 336 \AA(v v w)$, which they indexed as 332 . Of the 39 other $h k l$ having h odd in their Table 1 only 7 do not have spacings coinciding with other $h k l$ having h even. These 7 are $1 \cdot 10 \cdot 0,720$, 581-731, 313, 760, and 513. However, these may be indexed
as $291,490,602-233-043-0 \cdot 11 \cdot 1,472,4 \cdot 10 \cdot 1-810$, and 273 respectively, which had been overlooked by the previous authors. The powder pattern is accordingly consistent with the halving of a.

The fiber rattern, Table 2 of Khawas \& Krishna Murti, includes 14 hkl having h odd, 5 of which do not coincide with h even reflections. These are 360, 111, 171, 361 , and 142 , which may be indexed as $470,021,441,271$, and 232 respectivel', likewise previously overlooked. The fiber pattern is thus also consistent with the halving of a.

We have obtained revised values of the lattice constants by least-squares treatment of 42 resolved lines in our powder pattern. If there was any suspicion that a line was composite it was omitted from the calculations. The results are $a=6.921 \pm 0.002, b=21.146 \pm 0.006$, and $c=5.835 \pm$ $0.001 \AA$, where the stated uncertainties are 10 times those obtained from the least-squares calculations, which we feel are unrealistic.

If we succeed in obtaining another crystal suitable for recording intensity data a full structure determination will be initiated.

It is worth mentioning that the danger of basing a unit cell on powder data only has recently been pointed out by Lester \& Lipson (1970).

This work was supported by the National Science Foundation and by the Advanced Research Projects Agency, Office of the Secretary of Defense. We thank Mr Henry Katz for technical assistance.

References

Khawas, B. F. \& Krishna Murti, G. S. R. (1969a). Acta Cryst. B25, 1006.
Khawas, B. F. \& Krishna Murti, G. S. R. (1969b). Acta Cryst. B25, 2663.
Lester, K. M. \& Lipson, H. (1970). J. Appl. Cryst. 3, 92.

[^0]: * Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.

